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Abstract. The evolution /Y( t)) of asystem with slowly-varying Hamiltonian f?(Rr) depends 
not only on the slowness parameter fl but also on Planck's constant h. For systems with 
two (or more) classically separated phase-space regions which are quantally connected by 
tunnelling, the curves of instantaneous energy levels display hyperbolic near-degeneracies 
rather than crossings. In such cases the limits R + 0 ( h  fixed and small) and h + 0 (R fixed 
and small) lead to opposite behaviour of I 'P (1) ) .  As an illustration, the uniform semiclassical 
adiabatic behaviour (fl and h small, R / h  arbitrary) is calculated exactly for a double-well 
potential for which one well gets shallower as the other gets deeper. 

1. Introduction 

The adiabatic limit is the limit of slow change, and has given rise to two theorems, 
one for classical systems and one for quantal systems. In its simplest form, the classical 
adiabatic theorem (Arnol'd 1978) concerns integrable Hamiltonians H(qi,  pi; &(ant)) 
as fl + O ,  that is Hamiltonians depending on parameters R k  which vary slowly with 
time, as well as on N coordinates and momenta q, and pi, and whose orbits for fixed 
Rk are confined to N-tori in the 2N-dimensional phase space. The theorem states 
that the action integrals I, around the N irreducible cycles 7, of the tori, defined as 

are conserved in slow changes of the parameters Rk. The quantal adiabatic theorem 
(Messiah 1962) concerns evolution under the time-dependent Hamiltonian operator 
f i ( R k ( l ) ) = H ~ ~ l , f i i ;  R k ( f l f ) )  and states that a system which starts at t = O  in an 
eigenstate of H(R,(o) )  will remain for all t in the corresponding eigenstate of f i ( R k ( f ) ) ,  
provided the R k ( t )  change slowly ( f l+0)  and the state is never degenerate. 

It is natural to seek to connect these two theorems by means of the semiclassical 
limit, i.e. h. -j 0, and indeed such attempts played an important part in the development 
of quantum mechanics (Born 1960) by leading to the suggestion that (for integrable 
systems) the classical objects which correspond to quantum stationary states are 
phase-space tori. A strong form of this connection has been asserted by Hwang and 
Pechukas (1977)' who claimed that the asymptotic limits h. + 0 and Cl+ 0 are equivalent. 
Their argument is based on scaling: in the Schrodinger equation 

ih. d ) * ) / r ? t =  f i (Rk( f l f ) ) l* ) ,  (2) 

t Permanent address: H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 lTL,  LJK. 
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R can be eliminated from fi by defining R t  = T, leading to the replacement of h by 
Rh on the left-hand side. This argument is ill-founded because the notation fi conceals 
an h dependence (whose explicit form is different for different representations) which 
persists after tscaling, leaving an equation depending on h as well as Rh. 

My purpose here is to  point out that there is even a class of systems for which the 
semiclassical limit and the adiabatic limit flatly contradict each other. These systems 
involve pairs of quantum states associated with classical trajectories in separate regions 
of classical phase space, which are connected quantally by tunnelling. A simple model 
for such systems is set up in § 2 and solved in § 3. Some generalisations, and also 
possible implications for the difficult problem of semiclassical quantisation of non- 
integrable systems are discussed in § 4. 

2. The changing double-well potential 

Consider a particle of mass m moving in one dimension with energy E in the 
time-dependent potential V(q, t), illustrated in figure 1,  whose left-hand well (called 
L) gets shallower and whose right-hand well (R) gets deeper as shape parameters 
& ( t )  change slowly. Only energies E less than the energy of the barrier top will be 
considered. Thus there are two distinct classical motions with each E, and two actions 
IL and IR, which may be considered to be the parameters & ( f )  and which are given 
(cf (1)) by 

where the limits of integration are the classical turning points (figure 1). 

Figure 1. Changing double-well potential. 

In the simplest semiclassical approximation, each well supports separate families 
of localised quantum stationary states 14:) and 14;) with quantum numbers n and m ;  
the exponential tails leaking out of each well may be neglected. The energies 

of the states are given by the Bohr-Sommerfeld rule 

Successive levels in each family are separated by hwL and hwR, where w = (al/aE)-' 
is the frequency of classical motion in each well. As IL and I R  change, the energies 
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of successive pairs of quantised tori, labelled m and n, will become equal and these 
Bohr-Sommerfeld levels (fine lines in figure 2) will cross. 

Of course the true quantal levels (heavy lines in figure 2 )  will not cross, because 
the Bohr-Sommerfeld degeneracies will be split by barrier penetration. In the neigh- 
bourhood of the near-crossings the stationary states will not be localised in one of the 
wells but will be linear combinations of 14L) and 14R). Near the point A in figure 2 ,  
for example, the stationary states will be 

I$*)= a * l 4 L ) + P * I 4 R ) ,  ( 5 )  

where + and - denote the states of higher and lower energy E+ and E- and where 
the values of a, and /?, depend on f. 

Figure 2. Fine lines: Bohr-Sommerfeld levels EL(f), ER(?) corresponding to localised 
approximate states Ir#JL), I&). Heavy curves: true quantal energies E * ( f ) ,  corresponding 
to exact quantal stationary states I+,). 

Now comes the central question, which concerns the evolution I 9 ( t ) )  of a state 
which initially, at ti, is entirely in (say) a left-well localised state 14L) (i.e. I$-), cf figure 
2 ) .  What will be the state of the system much later, at 4 ,  if a near-degeneracy has 
intervened at t = ( t i +  4 ) / 2 ?  We define the duration of the change as 

4-4’ ( 6 )  
where 2 ~ / 0  is the time for the unperturbed energy splitting EL( t )  -ER( t )  to change 
by a mean single-well level spacing, i.e. 

f2 is the adiabatic parameter in this problem, and will always be chosen to satisfy 

a<< W L ,  a<< W R ,  (8) 

thus guaranteeing single-well quantal adiabaticity, i.e. ensuring that the state will not 
undergo transitions to any of the other states localised in the same well. 

There are two contrary predictions for the final state / 9 ( 4 ) ) .  The first, suggested 
by the classical adiabatic theorem, is that the evolving state will continue to be associated 
with the same torus and will remain localised in the left-hand well; thus I 9 ( 4 ) )  will 
be proportional to and so will have switched to the eigenstate I$+) (figure 2 )  by 
jumping the gap. The second prediction, suggested by the quantal adiabatic theorem, 
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is that l q ( t ) )  will cling to the same instantaneous eigenstate, i.e. [I,-), and so will have 
switched wells and be in 14R) at tf. What in fact happens depends delicately on the 
value of R in comparison with h, as will be shown in the next section. 

The possibility of switching or not switching between modes of weakly-coupled 
systems is well known in electromagnetic theory. The two potential wells correspond 
to parallel waveguides carrying microwaves (Louise11 1955, Cook 1955 and Fox 1955) 
or light (Snyder and Love 1983). Time corresponds to distance along the waveguides, 
and the changes in the shapes of the wells correspond to opposite tapers in the two 
waveguides. In molecular physics, energy curves such as those in figure 2 are also well 
known, and correspond to the energies of electrons, which change as the nuclei move; 
of the many papers dealing with these curve-crossing problems, I will need to cite only 
the early work by Zener (1932). In the context of this extensive and varied literature 
the only (minor) novelty of the present work lies in the explicit treatment within one 
framework of the effects of the two small parameters R and h. 

3. Calculation of final state 

Because of the single-well adiabatic condition (8), the state l ’P ( t ) )  for 46 ts 4 can be 
expressed as a linear combination of the two localised states 143 and IdR), namely 

We seek aL(tf) and ~ ~ ( 4 ) ;  of course these are linked by ~ u J ~ + ~ u R / ~  = 1.  In this basis 
the Hamiltonian fi is just the two-state operator 

whose diagonalisation gives the two eigenstate energies E,(r) as 

E*(t)  = i ( E ~ ( f )   ER(^)) *$[(EL(?) - E ~ ( f ) ) ’ + A ~ ( t ) l ’ ’ ~ ,  (12) 
thus identifying A(0) as the energy gap if the unperturbed crossing (EL=ER) is 
considered to occur at f = 0. 

The Schrodinger equation (2),  together with (9),  now gives, as the equations 
determining the multipliers a,( t )  and aR( t ) ,  

An equivalent pair of coupled evolution equations could have been obtained by using 
as basis the instantaneous eigenstates I$*) instead of the localised states I + L )  ahd /4R), 
but these equations turn out to be less amenable to a direct solution. 

The Bohr-Sommerfeld conditions (4) determine the unperturbed levels EL and 
ER, but to find the splitting A ( 0 )  a more accurate semiclassical theory is needed. This 
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is provided by the WKB method (Berry and Mount 1972), whose connection formulae 
lead to 

cot( TIL(E 7 t )  )cot(  .rrl,(E A 3 t )  )=;exp( 1 -2K ( E ,  t )  ) 
where K denotes the barrier integral (figure 1) 

K ( E ,  t ) =  dq [2m(V(q, t)-E)]1'2. 6 
A careful derivation and discussion of (14) is given by Froman (1966), Froman and 
Myhrman (1970) and Froman et a1 (1972). 

The tunnelling exponential on the right-hand side of (14) is exceedingly small. If 
it is neglected, the Bohr-Sommerfeld conditions (4) result. But it is not difficult to 
prove that the energies satisfying (14) can never degenerate as t varies, and that the 
splitting A(0)  at the instant t = 0 at which two unperturbed levels EL,, and ER,, would 
degenerate at energy E is 

(16) 

This is far smaller than the single-well splittings Aw, and Aw,, so that the interaction 
between I + L )  and I + R )  is confined to a tiny fraction of the time interval 4-4.  During 
this interaction time A is essentially constant and EL - ER is essentially the linear 
function (cf 7). 

A(0) = ( A / T ) ( O ~ W ~ ) ' / ~  exp(-K(E, O ) / A ) .  

E L (  t )  - E R (  t )  = h ( W L W R ) ' / 2 f l t / 2 r .  

T E 'a e K l h  

(17) 

On changing variables from t to T, defined by 

t ,  (18) Z 

the evolution equations (13) now become 

1 daL i 
d T  A 
-- - --aR exp(+iTz/A) 

d a R - - i  -- aL exp(-iTz/A) 
d T  A 

where the parameter A is defined as 

A = TR e+2K'h/(wLwR)1/2. (20) 

As t varies from 4 to 4 ,  the phases TZ/A of the oscillatory coefficients in (19) vary 
from T ( w ~ w ~ ) ' / ~ / ~ ~ ~  to zero and back to  ~(w,w,)'/~/16R; this follows from (6), 
(18) and (20). The adiabatic conditions (8)  imply that these phase changes are large, 
so that t, and 4 can be considered to lie in the asymptotic regions of (19), which may 
therefore be integrated from T = -a (with the initial condition (10)) to  T=+a. This 
integration was carried out exactly by Zener (1932) (for him, (19) was not asymptoti- 
cally exact, as it is here, but was an approximate model treating unperturbed molecular 
electron energy curves crossing linearly and interacting with constant strength). Zener's 
technique was to differentiate the first of equations (19), thereby obtaining for aL 
alone a second-order differential equation, whose exact solution is a parabolic cylinder 
function of complex order and argument. Standard asymptotic forms of these functions 
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can then be employed to connect the probabilities at T = fa, with the result 

(21) 
laL(-co)(2=l  laL( +a)12=exp{-?r/A} 

t* I aR( -a) l2=0 I a R (  1 - exp{ - T /  A }  . 

The main result of this paper, written as an explicit form for the probability that 
the state has remained localised in the left-hand well at &, is 

l ~ ~ ( + ~ ) ( ~ = e x p { - [ ( o ~ o ~ ) ~ ’ ~ / R ]  e x p ( - 2 ~ / h ) ) .  (22) 

From this uniform semiclassical adiabatic formula it is easy to extract the semiclassical 
limit and the adiabatic limit as two extremes, namely 

as h + 0 (semiclassical) 
bL(+W)12 

L O  as R+O (adiabatic) 

These limits 
the state to 
parameter A 

accord with intuition: for the change to be quantally adiabatic, i.e. for 
remain in the instantaneous eigenstate It,-) and so switch wells, the 
must be small, so that R must not only be small in comparison with oL 

and wR (cf 8) but also small in comparison with the energy splitting, which involves 
the tunnelling factor exp(-K/)i) (cf 16); in the semiclassical limit, on the other hand, 
this factor vanishes and A is large, so that even changes satisfying (8) appear fast and 
the state jumps eigenstates from I$-) to It,,) while remaining in the left-hand well. 

The behaviour of laL( T)I2 for intermediate times can be quite complicated, with 
strong and rapid oscillations (which depend on A )  accompanying the approach to the 
asymptotic values (21). This is illustrated by figure 3 which shows computed solutions 
of equation (19) for four values of A. 

T 
0 10 

Figure 3. Solutions of the Schrodinger equation (19) giving the probability la,(T)I2 that 
the state remains in the left-hand well, for the indicated values of the parameter A defined 
by (20). 

4. Discussion 

The main conclusion of this paper is that the adiabatic and semiclassical limits lead to 
opposite behaviour when two levels in a slowly-changing system pass a near-degeneracy 
resulting from tunnelling between separated classical orbits. This conclusion has wider 
applicability than the double-well model employed to illustrate it. In particular, the 
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classical separation of the two orbits need not be enforced by real-space potential 
barriers. 

One way to see this is to imagine the double-well potential V(41) augmented by 
addition of a single-well potential W ( q 2 )  depending on a perpendicular coordinate q2. 
For fixed values of well parameters, motion in the combined potential U ( q , , q 2 ) =  
V +  W (whose contours are shown in figure 4) is separable classically and quantally, 
with the q1 and q2 energies E ,  and E2 separately conserved and separately quantised. 
If El is below the top of the barrier between the wells of V(ql) ,  all the avoided-crossing 
and quantal evolution discussed in this paper will occur. If in addition E2 is large 
enough, then the classically allowed region U ( q l ,  q 2 )  < El + E2 is a single connected 
region, with no potential barrier restricting its exploration. Nevertheless, the classical 
orbits do not fill this region: they are restricted by constants of motion to occupy two 
rectangles within it, as illustrated in figure 4. 

Figure 4. Fine curves are contours of potential U ( q , ,  q 2 )  = V ( q , )  + W(q,), where V has 
a double well and W a single well. The heavy curve bounds the classically allowed region 
for an energy E ,  + E ,  greater than that of the potential saddle. The rectangles bound the 
regions to which the classical orbits are restricted by the separate constancy of E ,  and E,. 

Alternatively, the classical orbits may be separated by a potential barrier in momen- 
tum space. This can happen in one dimension for rotators, for which the coordinate 
4 is periodic so that phase space 4, p is a cylinder; the two orbits correspond to opposite 
rotations with the same actions. H(q ,  p,  t )  may not be a symmetric function of p ,  
because this would imply permanent Bohr-Sommerfeld degeneracies split by momen- 
tum tunnelling (provided the qdependence is non-trivial), whereas the phenomena 
described in this paper require crossing of Bohr-Sommerfeld levels. One system with 
a suitable non-symmetric Hamiltonian is a bead sliding on a rotating non-circular hoop 
whose shape, area or angular velocity is slowly changed. 

In conclusion I wish to give a brief discussion of the extent to which adiabatic ideas 
might be useful in quantising systems whose classical motion is not integrable. Solovev 
(1978) suggests that the classical adiabatic theorem does apply to such systems, and 
invokes the correspondence principle to assert that the energy of a state with given 
quantum numbers, for a non-integrable Hamiltonian A( q) ,  can be obtained by starting 
with an exactly-soluble Hamiltonian A( fJ which slowly evolves to A( q ) ,  and following 
the classical trajectory which initially lies on the quantised torus with the same quantum 
numbers. He illustrates this method by obtaining very accurate values for the energy 
levels of anharmonically perturbed two-dimensional coupled oscillators. 
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By labelling states with quantum numbers proportional to the actions of classical 
tori, Solovev is assuming that tori exist. And indeed for the (quasi-integrable) systems 
he employs as examples, the KAM theorem (Berry 1978, Arnol’d 1978) guarantees 
the survival of most tori during perturbation from H ( 4 )  to H ( 4 ) .  But not all tori 
survive perturbation; as is well known, the tori near resonance, i.e. those whose 
frequencies are close to commensurability, are destroyed and replaced by phase-space 
regions of small measure, intricately filled with orbits some of which are chaotic. As 
a particular torus, labelled by its actions, is follcwed whilst H changes, the frequencies 
must change and so will pass infinitely often through resonance. Therefore there will 
be many brief intervals between 4 and 4 where the torus will be temporarily lost. 
Moreover, it is precisely at resonances that Bohr-Sommerfeld quantisation would 
predict level crossings (Berry 1984), which do not exist quantum-mechanically because 
splitting will turn them into avoided crossings (Ramaswamy and Marcus 1981). 

Therefore neither the tori nor the quantum states will evolve in the way that 
Solovev assumes. Why then does his method work so well? My opinion is that this 
is probably because the changes in H, while slow in comparison with the torus 
frequencies, are neither so slow as to ensure thorough explorations of the chaotic 
zones during passage through resonance nor so slow as to ensure that the quantum 
state would cling to an eigenstate through an avoided crossing and so emerge on a 
different torus. In other words, in addition to the adiabatic parameter R there is a 
non-integrability parameter E ,  which together with h will affect the quantal level 
splitting; if R is not small in comparison with E ,  the classical orbit jumps the chaos 
gap and conserves actions through the resonance, and the quantum state jumps the 
energy gap and thus continues to be associated with the same torus. 

It is worth remarking that the Bohr-Sommerfeld degeneracies associated with 
resonance involve tori which are neighbours (in action space) and not ones which are 
separated (as in the double-well example), so that the quantal level splitting depends 
on tunnelling in a more complicated way and involves E as well as h (Ozorio de 
Almeida 1984). 

Of course, if the multidimensional system remains integrable between 4 and 4 
(unlike generic coupled anharmonic oscillators), there is no torus destruction and the 
effects of resonance are confined to instants (albeit densely distributed). In this case 
it was shown by Dirac (1925) that the adiabatic invariants are conserved in slow 
changes. If in addition the system remains separable, then at the instants of resonance 
there are true crossings of the quantum energy levels. One example of such a system 
is a particle in a two-dimensional rectangular box whose side ratio is varied. 

Finally, consider an extreme of non-integrability, where there are no tori at all. 
This corresponds to a one-parameter family of ergodic systems. There are no actions 
to be conserved and so no consistent labelling of states by corresponding sets of 
quantum numbers. There is, however, one adiabatic invariant, namely the volume of 
the energy shell. (It is a curious fact, easily confirmed by examples, that this volume 
is not an adiabatic invariant for non-ergodic-e.g. separable-systems.) This suggests 
the quantisation law 

1 [...I d N q d N p = n + $  

for ergodic systems, and indeed Berry and Wilkinson (1984) show that this formula 
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(augmented by an asymptotic correction) gives accurately the average behaviour of 
the energy levels of triangles whose angles are varied. Superposed on the average are 
of course very interesting oscillations and fluctuations (Berry 1984) which lead to level 
spacings less regular than (24) would predict. (These departures from regularity are 
much greater in the case of integrable systems, for which (24) retains meaning because 
its left-hand side is a general asymptotic formula valid for any system, giving the 
number of levels with energies below E.) 
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